Sulfate transporters involved in sulfate secretion in the kidney are localized in the renal proximal tubule II of the elephant fish (Callorhinchus milii).

نویسندگان

  • Kumi Hasegawa
  • Akira Kato
  • Taro Watanabe
  • Wataru Takagi
  • Michael F Romero
  • Justin D Bell
  • Tes Toop
  • John A Donald
  • Susumu Hyodo
چکیده

Most vertebrates, including cartilaginous fishes, maintain their plasma SO4 (2-) concentration ([SO4 (2-)]) within a narrow range of 0.2-1 mM. As seawater has a [SO4 (2-)] about 40 times higher than that of the plasma, SO4 (2-) excretion is the major role of kidneys in marine teleost fishes. It has been suggested that cartilaginous fishes also excrete excess SO4 (2-) via the kidney. However, little is known about the underlying mechanisms for SO4 (2-) transport in cartilaginous fish, largely due to the extraordinarily elaborate four-loop configuration of the nephron, which consists of at least 10 morphologically distinguishable segments. In the present study, we determined cDNA sequences from the kidney of holocephalan elephant fish (Callorhinchus milii) that encoded solute carrier family 26 member 1 (Slc26a1) and member 6 (Slc26a6), which are SO4 (2-) transporters that are expressed in mammalian and teleost kidneys. Elephant fish Slc26a1 (cmSlc26a1) and cmSlc26a6 mRNAs were coexpressed in the proximal II (PII) segment of the nephron, which comprises the second loop in the sinus zone. Functional analyses using Xenopus oocytes and the results of immunohistochemistry revealed that cmSlc26a1 is a basolaterally located electroneutral SO4 (2-) transporter, while cmSlc26a6 is an apically located, electrogenic Cl(-)/SO4 (2-) exchanger. In addition, we found that both cmSlc26a1 and cmSlc26a6 were abundantly expressed in the kidney of embryos; SO4 (2-) was concentrated in a bladder-like structure of elephant fish embryos. Our results demonstrated that the PII segment of the nephron contributes to the secretion of excess SO4 (2-) by the kidney of elephant fish. Possible mechanisms for SO4 (2-) secretion in the PII segment are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmoregulation in elephant fish Callorhinchus milii (Holocephali), with special reference to the rectal gland.

Osmoregulatory mechanisms in holocephalan fishes are poorly understood except that these fish are known to conduct urea-based osmoregulation as in elasmobranchs. We, therefore, examined changes in plasma parameters of elephant fish Callorhinchus milii, after gradual transfer to concentrated (120%) or diluted (80%) seawater (SW). In control fish, plasma Na and urea concentrations were about 300 ...

متن کامل

Sequencing and Analysis of Full-Length cDNAs, 5′-ESTs and 3′-ESTs from a Cartilaginous Fish, the Elephant Shark (Callorhinchus milii)

Cartilaginous fishes are the most ancient group of living jawed vertebrates (gnathostomes) and are, therefore, an important reference group for understanding the evolution of vertebrates. The elephant shark (Callorhinchus milii), a holocephalan cartilaginous fish, has been identified as a model cartilaginous fish genome because of its compact genome (∼910 Mb) and a genome project has been initi...

متن کامل

Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome

Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors descri...

متن کامل

Cloning of rainbow trout SLC26A1: involvement in renal sulfate secretion.

The kidney plays an important role in ion regulation in both freshwater and seawater fish. However, ion transport mechanisms in the teleost kidney are poorly understood, especially at the molecular level. We have cloned a kidney-specific SLC26 sulfate/anion exchanger from rainbow trout (Oncorhynchus mykiss) that is homologous to the mammalian SLC26A1 (Sat-1). Excretion of excess plasma sulfate ...

متن کامل

Roles of Slc13a1 and Slc26a1 sulfate transporters of eel kidney in sulfate homeostasis and osmoregulation in freshwater.

Sulfate is required for proper cell growth and development of all organisms. We have shown that the renal sulfate transport system has dual roles in euryhaline eel, namely, maintenance of sulfate homeostasis and osmoregulation of body fluids. To clarify the physiological roles of sulfate transporters in teleost fish, we cloned orthologs of the mammalian renal sulfate transporters Slc13a1 (NaSi-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 311 1  شماره 

صفحات  -

تاریخ انتشار 2016